Correcting InSAR Topographically Correlated Tropospheric Delays Using a Power Law Model Based on ERA-Interim Reanalysis
نویسندگان
چکیده
Tropospheric delay caused by spatiotemporal variations in pressure, temperature, and humidity in the lower troposphere remains one of the major challenges in Interferometric Synthetic Aperture Radar (InSAR) deformation monitoring applications. Acquiring an acceptable level of accuracy (millimeter-level) for small amplitude surface displacement is difficult without proper delay estimation. Tropospheric delay can be estimated from the InSAR phase itself using the spatiotemporal relationship between the phase and topography, but separating the deformation signal from the tropospheric delay is difficult when the deformation is topographically related. Approaches using external data such as ground GPS networks, space-borne spectrometers, and meteorological observations have been exploited with mixed success in the past. These methods are plagued, however, by low spatiotemporal resolution, unfavorable weather conditions or limited coverage. A phase-based power law method recently proposed by Bekaert et al. estimates the tropospheric delay by assuming the phase and topography following a power law relationship. This method can account for the spatial variation of the atmospheric properties and can be applied to interferograms containing topographically correlated deformation. However, the parameter estimates of this method are characterized by two limitations: one is that the power law coefficients are estimated using the sounding data, which are not always available in a study region; the other is that the scaled factor between band-filtered topography and phase is inverted by least squares regression, which is not outlier-resistant. To address these problems, we develop and test a power law model based on ERA-Interim (PLE). Our version estimates the power law coefficients by using ERA-Interim (ERA-I) reanalysis. A robust estimation technique was introduced in the PLE method to estimate the scaled factor, which is insensitive to outliers. We applied the PLE method to ENVISAT ASAR images collected over Southern California, US, and Tianshan, China. We compared tropospheric corrections estimated from using our PLE method with the corrections estimated using the linear method and ERA-I method. Accuracy was evaluated by using delay measurements from the Medium Resolution Imaging Spectrometer (MERIS) onboard the ENVISAT satellite. The PLE method consistently delivered greater standard deviation (STD) reduction after tropospheric corrections than both the linear method and ERA-I method and agreed well with the MERIS measurements.
منابع مشابه
Estimation of InSAR Tropospheric Delay Using ERA-Interim Global Atmospheric Reanalysis
Tropospheric delays are considered to be one of the main performance limitations for Interferometric Synthetic Aperture Radar technology when applied to ground deformation monitoring. In this study, we evaluate the performance of ERA-Interim global atmospheric reanalysis on estimating the tropospheric delay on Sentinel-1 InSAR observations. The results are validated by four D-InSAR interferogra...
متن کاملStatistical comparison of InSAR tropospheric correction techniques
a r t i c l e i n f o Keywords: Atmosphere Tropospheric noise Corrections Phase-based Spectrometers Weather models InSAR State-of-the-art TRAIN Correcting for tropospheric delays is one of the largest challenges facing the interferometric synthetic aperture radar (InSAR) community. Spatial and temporal variations in temperature, pressure, and relative humidity create tropospheric signals in InS...
متن کاملInvestigation of MODIS mission capability in tropospheric delay estimation for precise point positioning
Tropospheric delay is always considered as one of the factors limiting the accuracy of GPS. In this paper, the three-dimensional ray tracing technique is proposed to calculate the tropospheric delay. The ability of the MODIS mission to calculate the tropospheric delay is also examined. For this purpose, an area in central Europe was selected and a MODIS acquisition on 2008/08/01 was studied. In...
متن کاملA Robust and Multi-Weighted Approach to Estimating Topographically Correlated Tropospheric Delays in Radar Interferograms
Spatial and temporal variations in the vertical stratification of the troposphere introduce significant propagation delays in interferometric synthetic aperture radar (InSAR) observations. Observations of small amplitude surface deformations and regional subsidence rates are plagued by tropospheric delays, and strongly correlated with topographic height variations. Phase-based tropospheric corr...
متن کاملMitigation of Tropospheric Delay on InSAR Interseismic Displacements
One of the major challenges of Interferometric Synthetic Aperture Radar (InSAR) technique is the existence of tropospheric effect on the results. The tropospheric effect is due to the changes of atmospheric parameters including temperature, pressure, and humidity between the master and slave images. In this research, two different methods based on spatial-temporal filters and calculation of pha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017